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1. INTRODUCTION

It is interesting that zero (Lebesgue) measure Cantor and pure singular
continuous spectrum have been the rules for finite valued almost periodic
(discrete) Schrödinger operators in one dimension. (1–4, 9, 16, 20, 21, 23, 24) Virtually
all rigorous results have pointed to that direction, including important
cases of primitive substitutions and Sturmian potentials (see the review of
ref. 4 and references therein). A latent exception for singular continuous
spectrum is the Rudin–Shapiro substitution for which numerical simula-
tions indicate the occurrence of a point component in the spectrum, (12, 13)

although it is still an open mathematical problem.
Such potentials give rise to strictly ergodic (i.e., uniquely ergodic and

minimal) dynamical systems (W, T), where W is the hull of the given
potential in Z constructed from the left shift operator T (see ahead for
more details). In terms of the elements in the hull, there are in the literature
three kinds of the mentioned spectral results which, with increasing degree
of generality, can be stated as generic (valid in a dense Gd set), full measure
(valid in a set of total invariant measure) and uniform (valid for all elements



in the hull). It is worth bringing up that due to minimality the spectrum,
as a set, does not depend on the element in the hull, so that if the zero
Lebesgue measure is verified for some potential, it then holds for all of
them. Notice that the zero Lebesgue measure property has lately gotten an
attractive discussion in ref. 20.

Clearly the uniform results are the most rare and, in the aperiodic
setting, have been gotten just for Sturmian, (7) quasi-Sturmian, (6) and the
Period Doubling substitution (5) potentials. The general strategy is to
analyze the possibility for Gordon-type arguments (8, 24) for all elements in
the hull (taking into account the almost periodicity, via partitions), exclud-
ing the point spectrum (see ahead).

Recently, we have studied a rather broad class of nonprimitive substitu-
tions (11) (we call it ‘‘z-class’’) and have gotten cases of aperiodic sequences
with pure singular continuous spectrum for the corresponding Schrödinger
operators, for potentials in generic and/or full measure sets in the hull.
In spite of lacking of Perron–Frobenius theorem, also for the nonprimitive
cases studied it was possible to prove strictly ergodicity, a very important
ingredient in such considerations. Nevertheless, nothing was said about the
Lebesgue measure of the spectrum and uniform results. It is the aim of this
work to fill in this gap, with examples of uniform results, including the
original nonprimitive substitution we have studied in ref. 10.

This work is organized as follows. In the second section we give basic
definitions, present the subclasses of the z-class for which we have obtained
uniform results and enunciate the main outcomes of this work (Theorems 1
and 2); in Section 3 we discuss some general facts about the z-class substi-
tutions and, as a simple application of results in ref. 20, present the proof
of Theorem 1; in Section 4, following the strategy of partitions of refs. 5
and 7, and a link to the Period Doubling substitution, we proceed to the
proof of our uniform spectral results (Theorem 2).

2. MAIN RESULTS

Our discussion will be restricted to substitution potentials assuming just
two values, so we consider an alphabet A={a, b}. As usual, Ag denotes
the set of all words of finite length and AN the set of all right infinite
words with letters in A. A substitution is a map t: AQAg. t can be
extended homomorphically to Ag and AN by concatenation, for instance,
t(abaa)=t(a) t(b) t(a) t(a) and t(aba...)=t(a) t(b) t(a)... . A substitu-
tion sequence is a fixed point ū of t in AN, i.e., t(ū)=ū. The existence of a
such fixed point is ensured by the following conditions (see ref. 22, Propo-
sition V.1): there is a letter a in A such that t(a) begins with a and the
length of tk(a) goes to infinity as k W . (tk denotes the kth iterate of t;
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it is supposed that t0(a)=a). Given P and Q in Ag, #PQ denotes the
number of occurrences of P in Q and |P| the length of P. A substitution
rule t is called primitive if there is j ¥ N such that #c t j(d) \ 1, for every
c, d ¥ A.

We recall the ‘‘z-class’’ of nonprimitive substitutions (introduced in
refs. 10 and 11):

z(a)=a...az
A1

b...bz
B1

a...az
A2

... b...bz
BN

a...az
AN+1

, z(b)=b, (1)

with Aj, Bj \ 1, j=1,..., N, and AN+1 \ 1, being the number of letters in
each block. z is clearly nonprimitive since #a z j(b)=0, -j.

Consider on AN (AZ) the point convergence topology generated by
the metric

d(u, v)=C
n

|un − vn |
2 |n| , u=(un), v=(vn),

with n ¥ N (n ¥ Z). Given ḡ a substitution sequence associated to z in (1),
consider the periodic sequences in AZ

gn=...zn(a) zn(a) · zn(a) zn(a)..., (2)

with the dot indicating the position of the zero index term. Since z(a)
begins and ends with a, (gn) is a Cauchy sequence and one gets a well-
defined limit

g= lim
n Q .

gn

in AZ, called the bilateral substitution sequence generated by z (if Aj=1
for all j, some adaptation is needed in order to guarantee the almost
periodicity of g; see Section 4.3 for a particular occurrence).

Let T: AZ
WAZ be the left shift (Tx)n=xn+1; the hull of x in AZ is

defined as

W=W(x)=Closure of {Tnx: n ¥ Z} in AZ.

We notice that for a recurrent sequence x its hull W is a compact and
T-invariant subset of AZ with TW(x)=W(x) (ref. 22, Chapter V), so that
the dynamical system (W(x), T) is well defined.

From now on we always denote by g=gz the bilateral substitution
sequence generated by z and Wz=W(g) its hull.
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Given an injective real function f: AW R, we associate a sequence in
l.(Z) to each w=(wn)n ¥ Z ¥ W by (f(wn))n ¥ Z, which we again denote by w

and call it a substitution potential. Therefore, every point w ¥ W defines a
bounded self-adjoint operator Hw on l2(Z) by

(Hwu)n=un+1+un − 1+wnun.

As usual, we shall indicate the spectrum of a self-adjoint operator H by
s(H) and by sac(H) its absolutely continuous spectrum.

Now we state the main results of this paper, and postpone their proofs
to later sections:

Theorem 1. Given an aperiodic substitution in the z-class (1), the
spectrum of the associated Schrödinger operator Hw is a Cantor set with
null Lebesgue measure, for every w ¥ Wz.

Consider the following particular substitutions in the z-class:

z1(a)=ab...bz
B1

aab...bz
B1

a

z2(a)=aab...bz
B1

aa

z3(a)=ab...bz
B1

ab...bz
B2

ab...bz
B1

a, B1 ] B2.

(3)

Theorem 2. For each substitution in (3) the corresponding
Schrödinger operators Hw have pure Cantor singular continuous spectrum
with null Lebesgue measure for all w in the respective hulls.

3. NULL LEBESGUE MEASURE

Before proceeding to the proof of Theorems 1 and 2 we gather and
amend some general properties of the z-class substitution. The suitable
properties of ergodicity and aperiodicity that we mentioned in the Intro-
duction are sufficient to exclude absolutely continuous spectrum for all
elements in the hull. This is gotten by combining the results of Kotani: (17)

for aperiodic ergodic potentials taking only a finite number of values, the
set of potentials with no absolutely continuous spectrum has full ergodic
measure; Last and Simon: (18) for minimal subshift potentials the absolutely
continuous spectrum is w-independent in the hull. Thus to exclude abso-
lutely continuous spectrum we have to give conditions for a substitution in
the z-class to be aperiodic (in this case we shall also say that z is aperiodic)
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and its associated hull be minimal and ergodic. These conditions are
written out in the following propositions, which complement a condition in
ref. 11.

Proposition 1. If either Aj \ 2 for some 1 [ j [ (N+1) or the Bj’s
are not all equal (or both), then the resulting substitution sequence g is not
ultimately periodic.

Proof. For the case Aj \ 2 see Lemma 1 in ref. 11. In the other case
z takes the form (with N \ 2)

z(a)=ab...bz
B1

ab...bz
B2

...ab...bz
BN

a.

Due to the definition of g, we restrict the proof to strictly positive index
of g, i.e., to ḡ. We consider first the case of periodic ḡ and then reduce the
case of ultimately periodic sequence to an argument of the periodic one.

Suppose that ḡ is periodic and denote the first minimal period block
of ḡ, by P (|P| \ 2). By the very definition of z the minimal period block
ends in the last b of a block Bj, i.e., g|P|=b and g|P|+1=a. Let nc be the
unique integer such that

|znc − 1(a)| [ |P| < |znc(a)|.

The first entries of ḡ are

z
nc(a)

{
ḡ=znc − 1(a) b...bz

B1

... znc − 1(a) b...bz
Bj

... b...bz
BN

znc − 1(a) b...bz
B1

znc(a) b...bz
B2

znc(a)... .

z
P

The choice of nc entails that a period block P starts at position
(|znc(a)|+B1). Similarly, it can be seen that ḡ is periodic with period
|znc(a)|+Bj, for all j=1,..., N. As all periods must be integer multiples
of |P|, this implies that all Bj must be equal (here, we use that |P| > Bj).
Therefore ḡ (and consequently g) is not periodic.

Suppose now that ḡ is ultimately periodic, so that there is an integer
k \ 1 such that ḡ is periodic, with period y, after its kth position (k \ 2).
Choose an integer m such that |zm(a)| > k and |zm(a)| > y. The first entries
of ḡ are

zm+1(a) b...bz
B1

[zm+1(a)] b...bz
B2

...
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and writing out the above second block zm+1(a) one gets, for the beginning
of ḡ,

zm+1(a) b...bz
B1

[zm(a) b...bz
B1

... zm(a) b...bz
BN

zm(a)] b...bz
B2

... .

The choice of m implies that a period block starts at position
(|zm+1(a)|+B1) and from it, to each (|zm(a)|+Bj)-block. As stated before
this implies that Bj are the same for all 1 [ j [ N. This contradiction shows
that ḡ and g are not ultimately periodic. L

Proposition 2. The subshift dynamical system (Wz, T) associated
with a substitution in the z-class (1) is strictly ergodic.

Proof. The periodic case is well known; for the aperiodic one see
Proposition 1 in ref. 11. L

In the primitive substitution case this fact is a consequence of the impor-
tant Perron–Frobenius Theorem (for details see ref. 22, Sections V.3–V.5),
which does not apply to our case and a specific proof of strictly ergodicity
was necessary (see also the remark at the end of this section for another
proof than the one referred to above).

The above propositions are important to conclude

Proposition 3. If z is aperiodic (e.g., as in Proposition 1), then
sac(Hw)=”, for all w ¥ Wz.

Proof. See Proposition 2 in ref. 11. L

Due to results of ref. 20, in order to establish Cantor spectrum with
null Lebesgue measure for the one-dimensional Hamiltonian with aperiodic
z-class potentials, it is sufficient to verify that these substitutions are
linearly repetitive, i.e., for each of them there exists a C > 0 such that for
every n ¥ N, every finite word (also called factor) of g of length n is a word
of every factor of length Cn.

Proposition 4. Every substitution in the z-class is linearly repetitive.

Proof. Given z as in (1), set f=;N+1
i=1 Ai, h=;N

i=1 Bi, and Rj=
(f j − 1)/(f − 1), so that (11)

|z j(a)|=f j+hRj.

Therefore, there exist positive numbers s, r such that

sf j [ |z j(a)| [ rf j, -j ¥ N.
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By almost periodicity (which follows from minimality) there exists J > 0 for
which every factor

gk+1 gk+2 · · · gk+J

of g of length J contains z2(a). Now, given a positive integer n, take jn such
that

|z jn − 1(a)| < n [ |z jn(a)|.

In this way, any factor of the form

w=z jn(gk+1) z jn(gk+2) · · · z jn(gk+J)

contains z jn+2(a) and hence all words of length n of g. Since

|w| [ |z jn(a)| × J [
r
s

sf jn − 1fJ [
r
s

|z jn − 1(a)| fJ <
r
s

nfJ

and every factor of length J |z jn(a)| contains a word of the form w (as
above), the result is proven with C=rfJ/s. L

Proof of Theorem 1. It follows readily from Proposition 4 above
and Theorems 1 and 2 in ref. 20.

Remark. As stated in ref. 20, for such class of subshifts satisfying
the linearly repetitive condition the associated hull is strictly ergodic (see
ref. 19 for a proof ). It then follows by this result and Proposition 4 an
alternative proof of Proposition 2.

4. UNIFORM RESULTS

Notice that by Proposition 1 the substitutions in (3) are aperiodic
and so, by Theorem 1, the spectra of Hw are Cantor sets of null Lebesgue
measure for all w in the respective hulls (recall that due to strict ergodicity
the spectrum, as a set, is the same for all potentials in the hull). By Propo-
sition 3, to conclude the proof of Theorem 2, it remains to exclude eigen-
values of Hw, for all w ¥ Wz with z as in (3). This analysis is performed
for each case and based on the properties of the particular potential con-
sidered. The main tools to exclude eigenvalues uniformly are Gordon type
arguments combined with the concept of partitions.
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In order to get uniform results, for the three subclasses z1, z2, z3, it will
be important to establish some links (i.e., morphic images; see ahead) to
the Period Doubling substitution considered in ref. 5. On initial considera-
tions such links should suffice to get uniform results, but we decide to
present a detailed analysis for two reasons: first, such links involve a
uniform bound for traces maps that in principle does not extend trivially to
morphic images (here it clearly takes advantage of the particular form of
the Period Doubling trace map); second, these links were explicitly needed
only in a special instance of the partition construction, for which we were
not able to apply Proposition 5(b), and such instance have also been the
only obstacle we have gotten while trying to get uniform results for still
other cases of the z-substitution, and we want to make this occurrence clear
for the interested reader (hopefully, someone could use it to obtain uniform
results for all substitutions in the z-class).

We recall that given w ¥ W (in an arbitrary ‘‘hull’’) and E ¥ R, we can
construct a solution of the formal difference equation

(Hwk)n=kn+1+kn − 1+wnkn=Ekn (4)

by using the transfer matrix formalism

Rkn+1

kn

S=RE − wn − 1
1 0

SR kn

kn − 1

S

and hence

Rkn+1

kn

S=RE − wn − 1
1 0

S · · ·RE − w1 − 1
1 0

S
z

ME (w, n)

Rk1

k0

S ,

where ME(w, n) is the transfer matrix from zero to n.
In the next proposition we state the two Gordon type arguments cited

above (for proofs, see refs. 8 and 24):

Proposition 5. For fixed w ¥ W and E ¥ R, let k ] 0 be a solution
of (4).

(a) If there exists a sequence kn Q . such that wj=wj+kn
, for all

1 [ j [ kn, and 0 < CE < . satisfying |tr ME(w, kn)| [ CE (tr ME denotes
the trace of the matrix ME), -kn, then k ¨ l2(Z), and E is not an eigenvalue
of Hw.
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(b) If there exists a sequence nk Q . such that

wj − nk
=wj=wj+nk

,

for all 1 [ j [ nk, then k ¨ l2(Z), and E is not an eigenvalue of Hw.

An n-partition of an element w in the hull of a bilateral z substitution
sequence g is a decomposition of w in substitution blocks of the form
sn=zn(a) and b=zn(b). For earlier use of partitions in related contexts see
refs. 14 and 15; more recent applications can be found in refs. 5–7. We use
the symbols ŝn or b̂ to denote the block of the n-partition that contains
the zero index term of w, and we call it the zero-block. A Bj-block in an
n-partition will be called isolated for the (n+1)-partition if it remains
a partition block for the (n+1)-partition. For example, the b below is
isolated for the 1-partition associated to z2 in (3) (here B1=b)

... a a b a az
s1

a a b a az
s1

b a a b a az
s1

a a b a az
s1

... .

Proposition 6. Given a substitution z as in (3), for each w ¥ Wz

there is a unique n-partition for all integer n \ 0.

Proof. First we discuss existence, and afterwards the uniqueness.
Since a bilateral substitution sequence generated by a substitution rule in
the z-class satisfies zn(g)=g (because they begins and ends with a), it is
clear the existence of an n-partition for g, the same occurring for all
translations T jg of g. Due to the metric d defined in AZ, for w=
limj Q . Tnj g, for each N ¥ N there exists nk such that for all nj \ nk we have
wl=gnj+l, |l| [ N, i.e., w and Tnj g coincide in the interval { − N,..., N}
… Z; thus, existence of the n-partition for Tnj g for all j implies existence of
n-partition for all w ¥ Wz.

The uniqueness for the 0-partition is clear for each w ¥ Wz (the proper w).
Close inspection shows that for each substitution in (3) the positions of the
sn in the n-partition uniquely determine the positions of the sn+1 blocks in
the (n+1)-partition of w, and uniqueness follows by induction. L

Just for sake of clarity, for z1, z2, and z3 in (3), we restrict the details
of the proof of Theorem 2 to the specific cases

z1(a)=abaaba, z2(a)=aabaa, z3(a)=ababbaba,

respectively. In each case we fix w ¥ Wz, E ¥ R and let k be a nonzero solu-
tion of Eq. (4). Then for an n-partition we discuss all possibilities for the
zero-block position and analyze the local symmetries of the potential
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around it. If at least one of the possible cases of block repetitions in Pro-
position 5, i.e., two-blocks with uniform bound traces in (a) and three-
blocks repetitions in (b), occurs for infinitely many partitions, we conclude
that such a solution is not square-summable. Below we will indicate, for
each possibility, if either (a) or (b) in Proposition 5 is applicable.

4.1. The z1 Substitution

We begin with some simple and important properties of the elements
in Wz1

(extended to the blocks sn and b of the partitions):

• the ‘‘a-blocks’’ are either a or aa;

• in the factor bab, one of the b’s is isolated for the 1-partition.

Case 1. The zero-block for the n-partition is a b.

Case 1.1. The b-block is isolated for the (n+1)-partition. Expand-
ing the blocks around it, as indicated below, one sees the presence of a
three-block repetitions. If this occurs for infinitely many partitions then
Proposition 5(b) (reflected at the origin) can be applied

sn+1 sn+1{ {
... sn bsn sn bz sn b̂z · sn bz sn sn bsn ... .

Case 1.2. The b-block is not isolated. In this case it may occur:

Case 1.2.1. sn bsn b̂sn sn bsn. Again by using Proposition 5(b) (reflected
at the origin):

sn+1 ŝn+1{ {
... sn bsn sn bsnz b snz b̂ · snz sn bsn ... .

Analogously for sn bsn sn b̂ sn bsn.

Case 1.2.2. sn sn b̂ sn sn. As indicated, we can use Proposition 5(b)

ŝn+1 sn+1{{
... sn bsn snz

b̂ · sn snz
bsn snz

bsn ... .

Similarly for sn bsn sn bsn sn b̂ · sn snbsn.

Case 2. The zero-block is a sn. By the structure of g we have the
following possibilities:
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Case 2.1. bŝn b. In this case the left or the right b is isolated for the
(n+1)-partition. Suppose that is the left b. Thus,

sn+1 ŝn+1{ {
... sn bsn sn bsn b ŝn bsn sn bsn ...

zzz

and we can apply Proposition 5(b).

Case 2.2. bŝn sn b (analogously for bsn ŝn b). We subdivide this case in
the following subcases (depending on the potential structure around ŝn):

Case 2.2.1. bŝn+1 b, that is the Case 2.1 above.

Case 2.2.2. ŝn+1 sn+1 and ŝn is a final block of sn+1,

ŝn+1 sn+1{ {
... sn bsn sn bŝn sn bsn sn bsn ...

zzz

and we apply Proposition 5(b) as indicated.

Case 2.2.3. ŝn+1 sn+1 and ŝn is not a final block for sn+1 (similarly for
sn+1 ŝn+1),

sn+1 ŝn+1 sn+1{ { {
... sn bsn sn bsn b sn bŝn sn bsn sn bsn sn bsn ... .

zzzz

In this case, due to the lack of symmetry around ŝn, we cannot apply
Proposition 5(b). An alternative is to find explicitly bounds for the trace
map, but this was not possible in this case. The way that we found to get
round this difficulty was an identification between z1 and the Period
Doubling tpd substitution (a W ab; b W aa):

Lemma 1. Defining J(a)=abaabab, J(b)=abaaba, extended in
the natural way to {a, b}g and {a, b}Z, then the following relations hold

J(t2n − 1
pd (a))=zn

1(a) bzn
1(a) and J(t2n − 1

pd (b))=zn
1(a) bzn

1(a) b;

J(t2(n − 1)
pd (a))=zn

1(a) b and J(t2(n − 1)
pd (b))=zn

1(a).

Proof. An induction argument. L

By using Lemma 1, we can decompose g (and hence all w ¥ Wz1
) in

suitable Period Doubling substitution blocks:

... abaababz
a

abaabaz
b

abaababz
a

abaabaz
b

· abaababz
a

abaabaz
b

abaababz
a

abaababz
a

abaababz
a

... .
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I.e., it is a way of ‘‘walking’’ over g, which will provide the necessary
uniform trace bounds to apply Proposition 5(a). Define

xn(E)=tr(ME(J(tn
pd(a))), yn(E)=tr(ME(J(tn

pd(b))).

Here, the transfer matrix ME(v) of a finite word v is defined in the usual
way. For n ¥ N, let the periodic gn be given by

gn=...J(tn
pd(a)) ·J(tn

pd(a))... . (5)

By Lemma 1 and a direct calculation, each gn contains a square z s(a) z s(a)
with s \ n/2 − 1. Thus, there exists a sequence (k(n)) in N such that the
operators Hn=HT k(n)gn

converge in the strong sense to Hg. By standard
arguments this implies

s(Hg) … 0
k \ n

sk

for every n ¥ N, where the bar denotes the closure in R and sk is the
spectrum of Hk. As Hk is periodic, sk={E: |xk(E)| [ 2}, and thus

s(Hg)c ‡ int 1 3
k \ n

{E: |xk(E)| > 2}2

for every n ¥ N, where int S denotes the interior of S … R and the Sc

denotes the complement of S. By definition of J and xk, yk, the recursion
relations (1.9) of ref. 2 hold for xn, yn.

These relations and the proof of Lemma 1 in ref. 2 show that
|xk(E)| > 2 for all k \ n whenever |xn(E)| > 2 and |xn+1(E)| > 2. Thus, the
set

3
k \ n

{E: |xk(E)| > 2}={E: |xn(E)| > 2} 5 {E: |xn+1(E)| > 2}

is open (as E W xk(E) is continuous). Putting this together, we arrive at

s(Hg)c ‡ {E: |xn(E)| > 2} 5 {E: |xn+1(E)| > 2}

for every n ¥ N. This shows that

|xn(E)| [ 2 or |xn+1(E)| [ 2

holds for every E ¥ s(Hg) and n ¥ N.
Now, in Case 2.2.3, adjacent to zero to the right, there appears

a square vv with v being a cyclic permutation of sn bsn=J(t2n − 1
pd (a)).
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Adjacent to zero to the left, there appears a square ww of a cyclic permu-
tation w of snb=J(t2(n − 1)

pd (a)) (see the sketched partitions at the beginning
of the discussion on Case 2.2.3). By the above reasoning at least one of the
corresponding traces x2(n − 1)(E) and x2n − 1(E) is bounded in modulus by 2
and we are in the situation of Proposition 5(a) (either to the left or to the
right).

4.2. The z2 Substitution

The elements of Wz2
satisfies the properties (that can be extended to

the blocks sn and b):

• a always appears in the form aa or aaaa;

• in the factor baab, one of the b’s is isolated for the 1-partition.

Case 1. The zero-block for the n-partition is a b-block.

We subdivide this case in the following two:

Case 1.1. b is isolated for the (n+1)-partition, i.e., the zero-block
of the (n+1)-partition is a b-block. In this case, passing to the (n+1)-
partition

sn+1 sn+1{ {
... sn sn bsn sn b̂ · sn sn bsn sn ...

zz z

and we can apply Proposition 5(b) (reflected at the origin).

Case 1.2. b is not isolated for the (n+1)-partition, i.e., the zero-
block of the (n+1)-partition is a sn+1-block. Now we have the following
subcases:

Case 1.2.1. sn+1 ŝn+1 b (or bŝn+1 sn+1) and we apply Proposition 5(b)
as indicated

sn+1 ŝn+1 sn+1{{ {
... sn sn bsn sn sn sn b̂ · sn sn b sn sn bsn sn ... .

z zz

Case 1.2.2. sn+1 ŝn+1 sn+1 sn+1 (or sn+1 sn+1 ŝn+1 sn+1) and we apply
Proposition 5(b) as indicated

sn+1 ŝn+1 sn+1 sn+1{{{{
... sn sn bsn sn sn sn b̂ · sn sn sn sn bsn sn sn sn bsn sn ... .

z zz
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Case 2. The zero-block to the n-partition is sn.

We divide this case in the following:

Case 2.1. sn ŝn sn. Analogous to the Case 1.2.2.

Case 2.2. bŝn sn b. One of the b’s is isolated for the (n+1)-partition.
Suppose that is the left b. Passing to the (n+1)-partition

sn+1 ŝn+1{ {
... sn sn bsn sn b ŝn sn bsn sn ...

zzz

and we are in the conditions of Proposition 5(b) (reflected at the origin).
The argument is symmetric to the isolated b position. The case bsn ŝn b is
similar.

Case 2.3. bŝn sn sn sn b. Passing to the (n+1)-partition we obtain
ŝn+1 sn+1 and have the following cases to analyze:

Case 2.3.1. sn+1 ŝn+1 sn+1, that is the Case 2.1 above.

Case 2.3.2. bŝn+1 sn+1 b, that is the Case 2.2.

Case 2.3.3. bŝn+1 sn+1 sn+1 sn+1 b, that is again the Case 2.3 that we
are dealing with. We shall use the following decomposition:

sn+1 ŝn+1 sn+1{ {{
... sn sn bsn sn b sn sn bŝn sn sn sn bsn sn ... .

zzz z

If it happens for all n-partition starting from a n0, we cannot use
Proposition 5(b). To conclude this case we identify z2 with the Period
Doubling tpd as in the following lemma:

Lemma 2. Defining J(a)=aab, J(b)=aa, extended in the natural
way to {a, b}g and {a, b}Z, then the following relations hold

J(t2n − 1
pd (a))=zn

2(a) and J(t2n − 1
pd (b))=zn

2(a) b;

J(t2n
pd(a))=zn

2(a) zn
2(a) b and J(t2n

pd(b))=zn
2(a) zn

2(a).

By Lemma 2 and a direct calculation, each periodic approximation of
g (as in (5)) contains a square z s(a) z s(a) with s \ n/2 − 1. We conclude the
proof as in the Case 2.2.3 for z1, with a square adjacent to the right of zero
of a cyclic permutation of sn=J(t2n − 1

pd (a)) and to the left of zero a square
of a cyclic permutation of sn sn b=J(t2n

pd(a)).
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4.3. The z3 Substitution

For the substitution z3, gn must be defined by (see, for instance,
Eq. (2))

gn=... zn
3(a) b · zn

3(a) b... .

The elements of Wz3
satisfy (as well as all sn and b blocks for the corre-

spondent partition):

• in the factor ababa one of b’s is isolated for the 1-partition;

• in the factor bbab just bb can be isolated for the 1-partition.

Case 1. The zero-block to the n-partition is sn.

We divide this case in the following:

Case 1.1. sn bŝn bsn. If the right b is isolated for the (n+1)-partition,
then

ŝn+1 sn+1{ {
... sn bsn bbsn bŝn b sn bsn bbsn bsn ...

zzz

and we can apply Proposition 5(b) as indicated (analogous if the left b is
isolated).

Case 1.2. bbŝn b, with bb isolated for the (n+1)-partition. In this
case

sn+1 ŝn+1{ {
... sn bsn bbsn bsn b b ŝn bsn bbsn bsn ...
zzz

and we use Proposition 5(b) as indicated. The case bsn bb with bb isolated
for the (n+1)-partition is analogous.

Case 1.3. bbŝn b, with bb not isolated for the (n+1)-partition. In
this case, passing to the (n+1)-partition it may occur:

Case 1.3.1. sn+1 bŝn+1 bsn+1 that is the Case 1.1.

Case 1.3.2. bŝn+1 bb and we can use Proposition 5(b) as indicated

sn+1 ŝn+1{ {
... sn bsn bbŝn bsn b b sn bsn bbsn bsn ... .
zzz
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Case 1.3.3. bbŝn+1 b that is the proper Case 1.3. We shall use the
following decomposition:

ŝn+1 sn+1{ {
... sn bsn bbsn bsn b b sn bsn bbŝn bsn b sn bsn bbsn bsn ... .

zzzz

If it occurs for all n-partition from some n0, we cannot use Proposi-
tion 5(b). In this case we decompose z3 in Period Doubling potential blocks
as follows:

Lemma 3. Defining J(a)=ababb, J(b)=abab, extended in the
natural way to {a, b}g and {a, b}Z, then the following relations hold

J(t2n − 1
pd (a))=zn

3(a) b and J(t2n − 1
pd (b))=zn

3(a) bb;

J(t2n
pd(a))=zn

3(a) bzn
3(a) bb and J(t2n

pd(b))=zn
3(a) bzn

3(a) b.

By Lemma 3 and a direct calculation, each periodic approximation of
g (as in (5)) contains a square z s(a) bz s(a) b with s \ n/2 − 1. We conclude
the proof as in the Case 2.2.3 for z1, with a square adjacent to the right of
zero of a cyclic permutation of sn b=J(t2n − 1

pd (a)), and to the left of zero a
square of a cyclic permutation of sn bsn bb=J(t2n

pd(a)).

Case 2. The zero-block is a b-block.

Case 2.1. sn b̂ sn where b is isolated. We can use Proposition 5(b) as
indicated

sn+1{
... sn bsn bbsn bsn b̂ · sn bsn bbsn bsn ... .

z zz

Case 2.2. sn b̂bsn where bb is isolated (analogous for sn bb̂sn).
Proposition 5(b) can be applied as follows

... sn bsn bbsn bsn b̂ · b sn bsn bbsn bsn b... .
z zz

Case 2.3. sn b̂ sn where b is not isolated or the cases sn bb̂sn and
sn b̂bsn with bb not isolated, reverts to Case 1.

This concludes the analysis for the z3 substitution and the proof of
Theorem 2.
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